题目内容

9.已知等差数列{an}前n项的和为Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1
(2)求Sn,an
(3)设bn=|an-30|,求{bn}的前n项的和为Tn

分析 (1)分别令n=1,2,列出方程组解出;
(2)根据a1和d写出.
(3)分当n≤8和n≥8两种情况进行讨论.

解答 解:(1)由已知得$\left\{\begin{array}{l}{S_2}-3{S_1}=3\\ 3{S_3}-5{S_2}=15\end{array}\right.$,即$\left\{\begin{array}{l}{-{a}_{1}+d=3}\\{-{a}_{1}+4d=15}\end{array}\right.$,解得a1=1,d=4.
(2)∵{an}为等差数列,a1=1,d=4,
∴an=1+(n-1)•4=4n-3,
${S_n}=\frac{1+4n-3}{2}n=2{n^2}-n$.
(3)bn=|4n-33|,
n≤8时,bn=33-4n,${T_n}=\frac{{{b_1}+{b_n}}}{2}n=\frac{29-4n+33}{2}n=-2{n^2}+31n$,
n>8时,bn=4n-33,${T_n}={T_8}+\frac{{{b_9}+{b_n}}}{2}(n-8)=120+\frac{3+4n-33}{2}(n-8)=2{n^2}-31n+240$.
所以Tn=$\left\{\begin{array}{l}{-2{n}^{2}+31n,n≤8}\\{2{n}^{2}-31n+240,n>8}\end{array}\right.$.

点评 本题考查了等差数列的通项公式,求和公式,分类讨论思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网