题目内容

14.设函数f(x)=x2+2(a-a2)x+4a-1,若存在x1∈[a-2,a-1],存在x2∈[a+3,a+6],满足f(x1+1)=f(x2),则实数a的取值范围为($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).

分析 由f(x₁+1)=f(x₂),推导出[(x₁+1)-(a2-a)]2=[x₂-(a2-a)]2,从而x₁+x₂=2(a2-a)-1,进而2a+2≤2(a2-a)-1≤2a+4,由此能求出实数a的取值范围.

解答 解:∵f(x)=x2+2(a-a2)x+4a-1=[x-(a2-a)]2-(a-a22+4a-1,
∴f(x₁+1)=[(x₁+1)-(a2-a)]2-(a-a22+4a-1,
f(x₂)=[x₂-(a2-a)]2-(a-a22+4a-1,
∵f(x₁+1)=f(x₂),
∴[(x₁+1)-(a2-a)]2=[x₂-(a2-a)]2
(x₁+1)2-2(a2-a)(x₁+1)=x₂2-2(a2-a)x₂,
(x₁+1-x₂)(x₁+x₂+1)=2(a2-a)(x₁+1-x₂),
∴x₁+x₂=2(a2-a)-1,
∵x₁+x₂≤a+6+(a-2)=2a+4,
∴x₁+x₂≥a+3+(a-1)=2a+2,
∴2a+2≤2(a2-a)-1≤2a+4,
整理,得:2a2-4a-3≥0或2a2-4a-5≤0,
解得实数a的取值范围为($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).
故答案为:($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).

点评 本题考查实数的取值范围的求法,考查二次函数、一元二次不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网