题目内容

6.已知正方体ABCD-A1B1C1D1的棱长为1,E是棱D1C1的中点,点F在正方体内部或正方体的表面上,若EF∥平面A1BC1,则动点F的轨迹所形成的区域面积是(  )
A.$\frac{9}{8}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{2}$

分析 分别取棱CC1、BC、AB、AA1、A1D1的中点M、N、G、Q、P,推导出平面EMNGQP∥平面A1BC1,从而动点F的轨迹所形成的区域是平面EMNGQP,由此能求出动点F的轨迹所形成的区域面积.

解答 解:如图,分别取棱CC1、BC、AB、AA1、A1D1的中点M、N、G、Q、P,
则PE∥A1C1∥GN,EM∥A1B∥GQ,PQ∥BC1∥MN,
∴平面EMNGQP∥平面A1BC1
∵点F在正方体内部或正方体的表面上,若EF∥平面A1BC1
∴动点F的轨迹所形成的区域是平面EMNGQP,
∵正方体ABCD-A1B1C1D1的棱长为1,
∴PE=EM=MN=NG=GQ=PQ=$\frac{\sqrt{2}}{2}$,PN=$\sqrt{2}$,
∴E到PN的距离d=$\sqrt{(\frac{\sqrt{2}}{2})^{2}-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{\sqrt{6}}{4}$,
∴动点F的轨迹所形成的区域面积:
S=2S梯形PNME=2×$\frac{\frac{\sqrt{2}}{2}+\sqrt{2}}{2}×\frac{\sqrt{6}}{4}$=$\frac{3\sqrt{3}}{4}$.
故选:C.

点评 本题考查动点F的轨迹所形成的区域面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网