题目内容

9.设抛物线y=$\frac{1}{2}$x2的焦点为F,准线为l,过点F作一直线与抛物线交于A,B两点,再分别过点A,B作抛物线的切线,这两条切线的交点记为P.
(1)证明:直线PA与PB相互垂直,且点P在准线l上;
(2)是否存在常数λ,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立?若存在,求出λ的值;若不存在,说明理由.

分析 (1)设A(${x}_{1},\frac{1}{2}{{x}_{1}}^{2}$),B(${x}_{2},\frac{1}{2}{{x}_{2}}^{2}$),利用导数求出直线PA、PB的斜率,得到PA、PB所在直线方程,联立求得P的坐标,再设直线AB的方程为:y=kx+$\frac{1}{2}$,
联立AB方程与抛物线方程,利用根与系数的关系得到x1x2=-1,可得kPA•kPB=x1x2=-1,${y}_{P}=-\frac{1}{2}$,说明P在准线y=-$\frac{1}{2}$上,且PA⊥PB;
(2)存在λ=-1,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立.写出F、P的坐标,可得$\overrightarrow{FA}、\overrightarrow{FB}、\overrightarrow{FP}$的坐标,利用$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2即可求得实数λ的值.

解答 (1)证明:设A(${x}_{1},\frac{1}{2}{{x}_{1}}^{2}$),B(${x}_{2},\frac{1}{2}{{x}_{2}}^{2}$),
由y=$\frac{1}{2}$x2,得y′=x,
∴kPA=x1,kPB=x2
则直线PA:$y-\frac{1}{2}{{x}_{1}}^{2}={x}_{1}(x-{x}_{1})$,PB:$y-\frac{1}{2}{{x}_{2}}^{2}={x}_{2}(x-{x}_{2})$.
联立$\left\{\begin{array}{l}{y={x}_{1}x-\frac{1}{2}{{x}_{1}}^{2}}\\{y={x}_{2}x-\frac{1}{2}{{x}_{2}}^{2}}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}_{P}=\frac{1}{2}({x}_{1}+{x}_{2})}\\{{y}_{P}=\frac{{x}_{1}{x}_{2}}{2}}\end{array}\right.$.
设直线AB的方程为:y=kx+$\frac{1}{2}$,
联立$\left\{\begin{array}{l}{y=kx+\frac{1}{2}}\\{y=\frac{1}{2}{x}^{2}}\end{array}\right.$,得$\frac{1}{2}{x}^{2}-kx-\frac{1}{2}=0$.
∴x1x2=-1,则kPA•kPB=x1x2=-1,
∴${y}_{P}=-\frac{1}{2}$,则P在准线y=-$\frac{1}{2}$上,且PA⊥PB;
(2)解:存在λ=-1,使等式$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2恒成立.
∵F(0,$\frac{1}{2}$),P($\frac{{x}_{1}+{x}_{2}}{2},-\frac{1}{2}$),
$\overrightarrow{FA}=({x}_{1},\frac{1}{2}({{x}_{1}}^{2}-1))$,$\overrightarrow{FB}=({x}_{2},\frac{1}{2}({{x}_{2}}^{2}-1))$,
$λ{\overrightarrow{FP}}^{2}$=$λ((\frac{{x}_{1}+{x}_{2}}{2})^{2}+1)$=$λ(\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{4}+\frac{1}{2})$.
$\overrightarrow{FA}•\overrightarrow{FB}={x}_{1}{x}_{2}+\frac{1}{4}({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)$=$-1+\frac{1}{4}{{x}_{1}}^{2}{{x}_{2}}^{2}-\frac{1}{4}({{x}_{1}}^{2}+{{x}_{2}}^{2})+\frac{1}{4}$=$-\frac{1}{2}-\frac{1}{4}({{x}_{1}}^{2}+{{x}_{2}}^{2})$.
若$\overrightarrow{FA}$•$\overrightarrow{FB}$=λ$\overrightarrow{FP}$2
则$λ(\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{4}+\frac{1}{2})$=$-\frac{1}{2}-\frac{1}{4}({{x}_{1}}^{2}+{{x}_{2}}^{2})$,解得λ=-1.

点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网