题目内容
(本题满分14分) 本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.
设等比数列
的前
项的和为
,公比为
.
(1)若
成等差数列,求证:
成等差数列;
(2)若
(
为互不相等的正整数)成等差数列,试问数列
中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若
为大于
的正整数.试问
中是否存在一项
,使得
恰好可以表示为该数列中连续两项的和?请说明理由.
练习册系列答案
相关题目
题目内容
(本题满分14分) 本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.
设等比数列
的前
项的和为
,公比为
.
(1)若
成等差数列,求证:
成等差数列;
(2)若
(
为互不相等的正整数)成等差数列,试问数列
中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若
为大于
的正整数.试问
中是否存在一项
,使得
恰好可以表示为该数列中连续两项的和?请说明理由.