题目内容

如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(1)求证:AC⊥BD;
(2)若平面ABD⊥平面CBD,且BD=
5
2
,求二面角C-AD-B的余弦值.
考点:二面角的平面角及求法,棱锥的结构特征,空间中直线与直线之间的位置关系
专题:空间位置关系与距离,空间角
分析:(1)由已知得△ABD≌△CBD,从而AD=CD,取AC的中点E,连结BE,DE,则BE⊥AC,DE⊥AC,从而AC⊥平面BED,由此能证明AC⊥BD.
(2)过C作CH⊥BD于点H,由已知得CH⊥平面ABD,过H做HK⊥AD于点K,连接CK,则∠CKH为二面角C-AD-B的平面角,由此能求出二面角C-AD-B的余弦值.
解答: (1)证明:∵∠ABD=∠CBD,AB=BC,BD=BD.
∴△ABD≌△CBD,
∴AD=CD.
取AC的中点E,连结BE,DE,则BE⊥AC,DE⊥AC.
又∵BE∩DE=E,
BE?平面BED,BD?平面BED,
∴AC⊥平面BED,
∴AC⊥BD.

(2)解:过C作CH⊥BD于点H.则CH?平面BCD,
又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,
∴CH⊥平面ABD. 
过H做HK⊥AD于点K,连接CK. 
∵CH⊥平面ABD,∴CH⊥AD,又HK∩CH=H,
∴AD⊥平面CHK,∴CK⊥AD.
∴∠CKH为二面角C-AD-B的平面角. 
连接AH.∵△ABD≌△CBD,∴AH⊥BD.
∵∠ABD=∠CBD=60°,AB=BC=2,
∴AH=CH=
3
,BH=1.∵BD=
5
2
,∴DH=
3
2
. 
∴AD=
21
2
,∴HK=
AH•DH
AD
=
3
7
7

∴tan∠CKH=
CH
HK
=
21
3

∴cos∠CKH=
30
10
,∴二面角C-AD-B的余弦值为
30
10
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网