题目内容

2.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,则目标函数z=-3y-2x的最大值为4.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,作出可行域如图,
化目标函数z=-3y-2x为y=$-\frac{2}{3}$x-$\frac{z}{3}$,
由图可知,当直线y=$-\frac{2}{3}$x-$\frac{z}{3}$过A(-2,0)时,直线在y轴上的截距最小,z有最大值,等于-3×0+2×2=4.
故答案为:4.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网