ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ax+b}{{{x^2}+c}}$£¨a{N*£¬b¡ÊR£¬0£¼c¡Ü1£©¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý£¬f£¨x£©µÄ×î´óֵΪ$\frac{1}{2}$£¬ÇÒf£¨1£©£¾$\frac{2}{5}$£®
£¨ I£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨ II£©ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨ III£©µ±´æÔÚx¡Ê[$\frac{1}{2}$£¬1]ʹµÃ²»µÈʽf£¨mx-x£©+f£¨x2-1£©£¾0³ÉÁ¢Ê±£¬ÇëͬѧÃÇ̽¾¿ÊµÊýmµÄËùÓпÉÄÜȡֵ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØÏµ¼´¿ÉÈ·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©¸ù¾Ýº¯Êýµ¥µ÷ÐԵ͍Òå¼´¿ÉÅжÏf£¨x£©µÄµ¥µ÷ÐÔ²¢Óö¨ÒåÖ¤Ã÷£»
£¨¢ó£©ÀûÓú¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔÖ®¼äµÄ¹ØÏµ¼´mx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢£®

½â´ð ½â£º£¨ I£©ÒòΪ$f£¨x£©=\frac{ax+b}{{{x^2}+c}}£¨a¡Ê{N^*}£¬b¡ÊR£¬0£¼c¡Ü1£©$¶¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý
ËùÒÔf£¨0£©=0¼´b=0¡­£¨1·Ö£©
$f£¨x£©=\frac{ax}{{{x^2}+c}}=\frac{a}{{x+\frac{c}{x}}}$£»Áî$¦Ì=x+\frac{c}{x}$£¬£¨0£¼c¡Ü1£©ÔÚx¡Ê£¨0£¬1]ÉÏ×îСֵΪ${¦Ì_{min}}=¦Ì£¨\sqrt{c}£©=2\sqrt{c}$£¬ËùÒÔ$f{£¨x£©_{max}}=\frac{a}{{2\sqrt{c}}}=\frac{1}{2}$£¬¼´$a=\sqrt{c}$¡­¢Ù¡­£¨3·Ö£©
ÓÖ$f£¨1£©=\frac{a}{1+c}£¾\frac{2}{5}$£¬¡­¢Ú
Óɢ٢ڿɵÃ$\frac{1}{2}£¼a£¼2$£¬ÓÖÒòΪa¡ÊN*£¬ËùÒÔc=a=1
¹Ê$f£¨x£©=\frac{x}{{{x^2}+1}}$¡­£¨5·Ö£©
£¨ II£©º¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý£»
ÏÂÖ¤Ã÷£ºÉèÈÎÒâx1£¬x2¡Ê[-1£¬1]ÇÒx1£¼x2
Ôò$f£¨{x_1}£©-f£¨{x_2}£©=\frac{x_1}{{{x_1}^2+1}}-\frac{x_2}{{{x_2}^2+1}}=\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}$
ÒòΪx1£¼x2£¬ËùÒÔx1-x2£¼0£¬ÓÖÒòΪx1£¬x2¡Ê[-1£¬1]£¬ËùÒÔ1-x1x2£¾0
¼´$\frac{{£¨{x_1}-{x_2}£©£¨1-{x_1}{x_2}£©}}{{£¨{x_1}^2+1£©£¨{x_2}^2+1£©}}£¼0$£¬¼´f£¨x1£©£¼f£¨x2£©
¹Êº¯Êý$f£¨x£©=\frac{x}{{{x^2}+1}}$ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý ¡­£¨9·Ö£©
£¨ III£©ÒòΪf£¨mx-x£©+f£¨x2-1£©£¾0£¬ËùÒÔf£¨mx-x£©£¾-f£¨x2-1£©¼´f£¨mx-x£©£¾f£¨1-x2£©
ÓÖÓÉ£¨ II£©º¯Êýy=f£¨x£©ÔÚ[-1£¬1]ÉÏΪÔöº¯Êý
ËùÒÔmx-x£¾1-x2£¬¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹmx-x£¾1-x2³ÉÁ¢¼´-1¡Ümx-x¡Ü1³ÉÁ¢
¼´´æÔÚ$x¡Ê[\frac{1}{2}£¬1]$ʹ$m£¾-x+\frac{1}{x}+1$³ÉÁ¢ÇÒ$1-\frac{1}{x}¡Üm¡Ü1+\frac{1}{x}$³ÉÁ¢
µÃ£ºm£¾1ÇÒ-1¡Üm¡Ü2
¹ÊʵÊýmµÄËùÓпÉÄÜȡֵ{m|1£¼m¡Ü2}¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýÆæÅ¼ÐԺ͵¥µ÷ÐÔµÄÓ¦Óã¬ÒÔ¼°º¯Êýµ¥µ÷ÐÔµÄÖ¤Ã÷£¬×ۺϿ¼²éº¯ÊýµÄÐÔÖÊ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø