题目内容
10.偶函数y=f(x)在区间(-∞,-1]上是增函数,则下列不等式成立的是( )| A. | f(-1)>f($\frac{\sqrt{3}}{3}$) | B. | f($\sqrt{2}$)>f(-$\sqrt{2}$) | C. | f(4)>f(3) | D. | f(-$\sqrt{2}$)>f($\sqrt{3}$) |
分析 f(x)是偶函数,则f(-x)=f(x),在区间(-∞,-1]上是增函数,利用单调性比较不等式大小.
解答 解:由题意:f(x)是偶函数,则f(-x)=f(x),在区间(-∞,-1]上是增函数.
对于A:f($\frac{\sqrt{3}}{3}$)=f($-\frac{\sqrt{3}}{3}$),∵$-\frac{\sqrt{3}}{3}>-1$,∴f(-1)<f($\frac{\sqrt{3}}{3}$);
对于B:f(x)是偶函数,即f(-x)=f(x),f($\sqrt{2}$)=f(-$\sqrt{2}$);
对于C:f(4)=f(-4),f(3)=f(-3),∵-4<-3,∴f(4)>f(3);
对于D:f($\sqrt{3}$)=f(-$\sqrt{3}$),∵$-\sqrt{3}$$<-\sqrt{2}$∴f(-$\sqrt{2}$)>f($\sqrt{3}$).
故选:D.
点评 本题考查了函数的奇偶性和单调性的灵活运用性.比较基础.
练习册系列答案
相关题目
18.对于任意的平面向量$\overrightarrow a$,$\overrightarrow b$,他们的夹角为θ,定义新运算$\overrightarrow a$?$\overrightarrow b$为向量$\overrightarrow a$在向量$\overrightarrow b$上的射影,即$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow a$cosθ,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$为平面向量,$\overrightarrow a$,$\overrightarrow c$的夹角为α,$\overrightarrow b$,$\overrightarrow c$的夹角为β,k∈R,则下列运算性质一定成立的是( )
| A. | $\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$ | B. | (k$\overrightarrow a$)?$\overrightarrow b$=$\overrightarrow a$?(k$\overrightarrow b$) | C. | $\overrightarrow a$•($\overrightarrow b$?$\overrightarrow c$)=$\overrightarrow b$•($\overrightarrow a$?$\overrightarrow c$) | D. | |$\overrightarrow a$?$\overrightarrow b$|=$\frac{|\overrightarrow a•\overrightarrow b|}{\overrightarrow b}$ |
19.已知|${\overrightarrow a}$|=$\frac{1}{2}$|${\overrightarrow b}$|,函数f(x)=$\frac{1}{3}$x3+|${\overrightarrow a}$|x2+$\overrightarrow a$•$\overrightarrow b$x-|${\overrightarrow a$+$\overrightarrow b}$|在R上有极值,则向量$\overrightarrow a$与$\overrightarrow b$的夹角的范围是( )
| A. | [$0\;,\;\frac{π}{6}$) | B. | $(\frac{π}{6}\;,\;π)$ | C. | $(\frac{π}{3}\;,\;π)$ | D. | $(\frac{π}{3}\;,\;π$] |
20.已知f(x)=x+$\frac{1}{x}$-2,f(a)=3,则f(-a)=( )
| A. | -8 | B. | -7 | C. | -5 | D. | -3 |