题目内容
13.已知△ABC的周长为20,A=60°,S△ABC=10$\sqrt{3}$,则a=( )| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
分析 由题意可得,a+b+c=20,由三角形的面积公式可得S=$\frac{1}{2}$bcsin60°,结合已知可求bc,然后由余弦定理,a2=b2+c2-2bccos60°可求a.
解答 解:由题意可得,a+b+c=20,则b+c=20-a,
∵S=$\frac{1}{2}$bcsin60°=10$\sqrt{3}$,
∴bc=40,
由余弦定理可得,a2=b2+c2-2bccos60°=(b+c)2-3bc=(20-a)2-120,
解方程可得,a=7,
故选:C.
点评 本题主要考查了三角形的面积公式及余弦定理在求解三角形中的应用,属于基础试题.
练习册系列答案
相关题目
4.设函数f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,则函数g(x)=f(x)-x的零点的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
18.对于任意的平面向量$\overrightarrow a$,$\overrightarrow b$,他们的夹角为θ,定义新运算$\overrightarrow a$?$\overrightarrow b$为向量$\overrightarrow a$在向量$\overrightarrow b$上的射影,即$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow a$cosθ,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$为平面向量,$\overrightarrow a$,$\overrightarrow c$的夹角为α,$\overrightarrow b$,$\overrightarrow c$的夹角为β,k∈R,则下列运算性质一定成立的是( )
| A. | $\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$ | B. | (k$\overrightarrow a$)?$\overrightarrow b$=$\overrightarrow a$?(k$\overrightarrow b$) | C. | $\overrightarrow a$•($\overrightarrow b$?$\overrightarrow c$)=$\overrightarrow b$•($\overrightarrow a$?$\overrightarrow c$) | D. | |$\overrightarrow a$?$\overrightarrow b$|=$\frac{|\overrightarrow a•\overrightarrow b|}{\overrightarrow b}$ |