题目内容

17.在△ABC中,角A,B,C所对的边分别为a,b,c,那么a>b是sinA>sinB的(  )条件.
A.充分不必要B.必要不充分C.充分且必要D.无关

分析 在三角形中,结合正弦定理,利用充分条件和必要条件的定义进行判断.

解答 解:在三角形中,若a>b,由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$,得sinA>sinB.
若sinA>sinB,则正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$,得a>b,
所以,a>b是sinA>sinB的充要条件.
故选:C

点评 本题主要考查了充分条件和必要条件的应用,利用正弦定理确定边角关系,是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网