题目内容

12.若sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,则cos($\frac{π}{4}$-x)等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 利用诱导公式将已知条件转化为$\sqrt{2}$cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,易得cos($\frac{π}{4}$-x)的值.

解答 解:∵sinx+sin($\frac{π}{2}$+x)=$\frac{\sqrt{2}}{3}$,
∴sinx+sin($\frac{π}{2}$+x)=sinx+cosx=$\sqrt{2}$cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,
∴cos($\frac{π}{4}$-x)=$\frac{1}{3}$.
故选:D.

点评 本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网