题目内容
18.已知函数f(x)=$\frac{1-x}{x}$+lnx,则f(x)在[$\frac{1}{2}$,2]上的最大值等于1-ln2.分析 求出导函数,从而确定函数的单调性,进而求函数的最值.
解答 解:∵函数f(x)=$\frac{1-x}{x}$+lnx,
∴f′(x)=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-1}{{x}^{2}}$,
故f(x)在[$\frac{1}{2}$,1]上单调递减,在[1,2]单调递增,
又∵f($\frac{1}{2}$)=1-ln2,f(2)=ln2-$\frac{1}{2}$,
f(1)=0,
f($\frac{1}{2}$)-f(2)=$\frac{3}{2}$-2ln2>0,
故fmax(x)=1-ln2,
故答案为:1-ln2.
点评 本题考查了导数的综合应用,属于中档题.
练习册系列答案
相关题目
9.已知两点A(2,2),B(2,1),O为坐标原点,若|$\overrightarrow{OA}$-t$\overrightarrow{OB}$|≤$\frac{2\sqrt{5}}{5}$,则实数t的值为( )
| A. | $\frac{6}{5}$ | B. | $\frac{5}{6}$ | C. | 1 | D. | $\frac{4}{3}$ |
10.设$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$在$\vec a$上的投影为4,在x轴上的投影为2,则$\vec b$为( )
| A. | (2,14) | B. | $({2,-\frac{2}{7}})$ | C. | (2,4) | D. | $({-2,\frac{2}{7}})$ |
5.“0<x<5”是“-2<x<6”成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |