ÌâÄ¿ÄÚÈÝ
13£®£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÔÚÍÖÔ²CÉÏÈÎȡһµãP£¬µãQÔÚPOµÄÑÓ³¤ÏßÉÏ£¬ÇÒ$\frac{|OQ|}{|OP|}$=2£®
£¨1£©µ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£»
£¨2£©Èô¹ýµãPµÄÖ±Ïßl£ºy=x+m½»£¨1£©ÖеÄÇúÏßEÓÚA£¬BÁ½µã£¬Çó¡÷ABQÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²µÄ½¹µã×ø±êºÍµãÔÚÍÖÔ²CÉÏ£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨¢ò£©£¨1£©ÉèP£¨2cos¦È£¬sin¦È£©£¬ÔòQ£¨4cos¦È£¬2sin¦È£©£¬0¡Ü¦È£¼2¦Ð£¬ÓÉ´ËÄÜÇó³öµ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-16=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ£¬½áºÏÒÑÖªÄÜÇó³ö¡÷ABQÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬
ÇÒÓÒ½¹µãF2µÄ×ø±êΪ£¨$\sqrt{3}$£¬0£©£¬µã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©ÔÚÍÖÔ²CÉÏ£¬
¡à$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬b=1£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨¢ò£©£¨1£©¡ßÔÚÍÖÔ²CÉÏÈÎȡһµãP£¬µãQÔÚPOµÄÑÓ³¤ÏßÉÏ£¬ÇÒ$\frac{|OQ|}{|OP|}$=2£¬
¡àÉèP£¨2cos¦È£¬sin¦È£©£¬ÔòQ£¨4cos¦È£¬2sin¦È£©£¬0¡Ü¦È£¼2¦Ð£¬
¡àµ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£º
$\left\{\begin{array}{l}{x=4cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬0¡Ü¦È£¼2¦Ð£¬
¡àµãEµÄÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-16=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=-\frac{8m}{5}$£¬${x}_{1}{x}_{2}=\frac{4{m}^{2}-16}{5}$£¬
¡÷=64m2-80m2+320£¾0£¬½âµÃ-2$\sqrt{5}£¼m£¼2\sqrt{5}$£¬
|AB|=$\sqrt{2[£¨-\frac{8m}{5}£©^{2}-4¡Á\frac{4{m}^{2}-16}{5}]}$=$\frac{4}{5}\sqrt{10-{m}^{2}}$£¬
ÉèQµ½Ö±Ïßy=x+mµÄ¾àÀëd=$\frac{|{x}_{Q}-{y}_{Q}+m|}{\sqrt{2}}$£¬
¡ßxQ=2xP£¬yQ=2yP£¬=2£¨xP+m£©£¬
Ôò$\frac{|2{x}_{P}-2{x}_{P}-2m+m|}{\sqrt{2}}$=$\frac{|m|}{\sqrt{2}}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x+n}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-4=0£¬
¡÷=80-16m2¡Ý0£¬¼´m2¡Ü5£¬
¡à${S}_{¡÷ABQ}=\frac{1}{2}d•|AB|$=$\frac{1}{2}¡Á\frac{|m|}{\sqrt{2}}¡Á\sqrt{2}¡Á\frac{\sqrt{320-16{m}^{2}}}{5}$
=$\frac{2}{5}\sqrt{-{m}^{4}+20{m}^{2}}$=$\frac{2}{5}\sqrt{-£¨{m}^{2}-10£©^{2}+100}$£¬
µ±m2=5ʱ£¬S¡÷ABQ×î´ó£¬ÇÒS¡÷ABQ×î´óֵΪ2$\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®
| A£® | 10 | B£® | 5 | ||
| C£® | 15 | D£® | ËæµãMÔÚÖ±ÏßlÉϵÄλÖñ仯¶ø±ä»¯ |
| ×ö²»µ½¿ÆÑ§ÓÃÑÛ | ÄÜ×öµ½¿ÆÑ§ÓÃÑÛ | ºÏ¼Æ | |
| ÄÐ | 45 | 10 | 55 |
| Å® | 30 | 15 | 45 |
| ºÏ¼Æ | 75 | 25 | 100 |
£¨2£©ÈôÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ýPµÄǰÌáÏÂÈÏΪÁ¼ºÃ¡°ÓÃÑÛϰ¹ß¡±ÓëÐÔ±ðÓйأ¬ÄÇô¸ù¾ÝÁÙ½çÖµ±í£¬×ȷµÄPµÄֵӦΪ¶àÉÙ£¿Çë˵Ã÷ÀíÓÉ£®
¸½£º¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£º
| P£¨K2¡Ýk0£© | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
| A£® | f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ$\frac{1}{2}$ | B£® | f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«Ð¡Öµ$\frac{1}{2}$ | ||
| C£® | f£¨x£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö | D£® | f£¨x£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝ¼õ |