题目内容

8.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的两焦点分别为F1,F2,过F1的直线与椭圆交于A,B两点,则△ABF2的周长为8.

分析 求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.

解答 解:椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的a=2,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=2,
由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a=4,
即有△ABF2的周长为|AB|+|AF2|+|BF2|
=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.
故答案为:8.

点评 本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网