题目内容
| OA |
| a |
| OB |
| b |
(1)求证:(
| a |
| b |
| a |
| b |
(2)线段PQ以点O为中点,且|PQ|=2|AB|,若两个向量k
| a |
| b |
| a |
| b |
| BP |
| AQ |
| BP |
| AQ |
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)
=a,
=
,且|
|=|
|=1,由此能证明(
+
)⊥(
-
).
(2)由题意知(k
+
)2=(
-k
)2,OA⊥OB,由此推导出
•
=(
-
)•(
-
)=-2-2cosθ,从而得到当θ=π时,
•
取得最大值为0.
| OA |
| OB |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(2)由题意知(k
| a |
| b |
| a |
| b |
| BP |
| AQ |
| OP |
| OB |
| OQ |
| OA |
| BP |
| AQ |
解答:
(1)证明:∵点A,B是单位圆上不同的两点,
∴
=a,
=
,
∴|
|=|
|=1,
又∵(
+
)•(
-
)=
2-
2=0,
∴(
+
)⊥(
-
).
(2)解:∵两个向量k
+
与
-k
的模相等,k≠0,k∈R,
∴(k
+
)2=(
-k
)2,
即k2
2+2k
•
+
2=
2-2k
•
+k2
2,
∵|
|=|
|=1,k≠0,k∈R,
∴
•
=0,∴OA⊥OB,
∴
•
=0,|PQ|=2|AB|=
,
∴线段PQ以点O为中点,即|
|=|
|=
,
又
=
-
,
=
-
,
=-
,
∴
•
=(
-
)•(
-
)
=
•
-
•
-
•
+
•
=-2-
•
-
•
=-2+
•
-
•
=-2+
(
-
)
=-2+
•
=-2-
•
=-2-2cosθ,
∴当θ=π时,
•
取得最大值为0.
∴
| OA |
| OB |
| b |
∴|
| a |
| b |
又∵(
| a |
| b |
| a |
| b |
| a |
| b |
∴(
| a |
| b |
| a |
| b |
(2)解:∵两个向量k
| a |
| b |
| a |
| b |
∴(k
| a |
| b |
| a |
| b |
即k2
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
∵|
| a |
| b |
∴
| a |
| b |
∴
| OB |
| OA |
| 2 |
∴线段PQ以点O为中点,即|
| OP |
| OQ |
| 2 |
又
| BP |
| OP |
| OB |
| AQ |
| OQ |
| OA |
| OP |
| OQ |
∴
| BP |
| AQ |
| OP |
| OB |
| OQ |
| OA |
=
| OP |
| OQ |
| OP |
| OA |
| OB |
| OQ |
| OB |
| OA |
=-2-
| OP |
| OA |
| OB |
| OQ |
=-2+
| OQ |
| OA |
| OB |
| OQ |
=-2+
| OQ |
| OA |
| OB |
=-2+
| OQ |
| BA |
=-2-
| OQ |
| AB |
=-2-2cosθ,
∴当θ=π时,
| BP |
| AQ |
点评:本题考查向量垂直的证明,考查向量的数量积的最大值的求法,解题时要认真审题,注意单位圆的性质的灵活运用.
练习册系列答案
相关题目