ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©ÒÔ×ø±êÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ·½³ÌΪ$sin¦È-\sqrt{3}¦Ñ{cos^2}¦È=0$£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Ð´³öÖ±ÏßlÓëÇúÏßC½»µãµÄÒ»¸ö¼«×ø±ê£®

·ÖÎö £¨¢ñ£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨£¬ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½«$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¬´úÈë$y-\sqrt{3}{x^2}=0$µÃ£¬$\sqrt{3}+\sqrt{3}t-\sqrt{3}{£¨{1+\frac{1}{2}t}£©^2}=0$£¬Çó³ö½»µã×ø±ê£¬¼´¿ÉÖ±ÏßlÓëÇúÏßC½»µãµÄÒ»¸ö¼«×ø±ê£®

½â´ð ½â£º£¨¢ñ£©¡ß$sin¦È-\sqrt{3}¦Ñ{cos^2}¦È=0$£¬¡à$¦Ñsin¦È-\sqrt{3}{¦Ñ^2}{cos^2}¦È=0$£¬
¼´$y-\sqrt{3}{x^2}=0$£»
£¨¢ò£©½«$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¬´úÈë$y-\sqrt{3}{x^2}=0$µÃ£¬$\sqrt{3}+\sqrt{3}t-\sqrt{3}{£¨{1+\frac{1}{2}t}£©^2}=0$£¬¼´t=0£¬
´Ó¶ø£¬½»µã×ø±êΪ$£¨{1£¬\sqrt{3}}£©$£¬
ËùÒÔ£¬½»µãµÄÒ»¸ö¼«×ø±êΪ$£¨{2£¬\frac{¦Ð}{3}}£©$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬱Ƚϻù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø