题目内容
已知数列{an}为等差数列,且a5=14,a7=20.设数列{bn}的前n项和为Sn,且bn=2-2Sn
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
,Tn为数列的前项和,求Tn.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
| an |
| bn |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件,利用等差数列的通项公式列出方程组求出首项和公差,由此能求出数列{an}的通项公式;利用bn=2-2Sn,由n=1求出首项,由bn-bn-1=-2(Sn-Sn-1)=-2bn,推导出{bn}是以b1=
为首项,
为公比的等比数列,由此能求出{bn}的通项公式.
(2)由(1)知cn=
=
,由此利用裂项求和法能求出Tn.
| 2 |
| 3 |
| 1 |
| 3 |
(2)由(1)知cn=
| an |
| bn |
| (3n-1)•3n |
| 2 |
解答:
解:(1)∵数列{an}为等差数列,且a5=14,a7=20,设公差为d,
∴
,解得a1=2,d=3,
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn,且bn=2-2Sn,
令n=1,则b1=2-2S1=2-2b1,∴b1=
,
当n≥2时,由bn=2-2Sn,
得bn-bn-1=-2(Sn-Sn-1)=-2bn,
∴
=
,
∴{bn}是以b1=
为首项,
为公比的等比数列,
∴bn=
•(
)n-1=
.
(2)由(1)知cn=
=
,
∴Tn=
[2•3+5•32+8•33+…+(3n-1)•3n],①
3Tn=
[2•32+5•33+8•34+…+(3n-1)•3n+1],②
①-②,得:
-2Tn=
[6+33+34+…+3n+1-(3n-1)•3n+1]
=
[6=
-(3n-1)•3n+1]
=
,
∴Tn=
.
∴
|
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn,且bn=2-2Sn,
令n=1,则b1=2-2S1=2-2b1,∴b1=
| 2 |
| 3 |
当n≥2时,由bn=2-2Sn,
得bn-bn-1=-2(Sn-Sn-1)=-2bn,
∴
| bn |
| bn-1 |
| 1 |
| 3 |
∴{bn}是以b1=
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)由(1)知cn=
| an |
| bn |
| (3n-1)•3n |
| 2 |
∴Tn=
| 1 |
| 2 |
3Tn=
| 1 |
| 2 |
①-②,得:
-2Tn=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 33(3n-1-1) |
| 3-1 |
=
| -(6n-5)•3n+1-15 |
| 4 |
∴Tn=
| (6n-5)•3n+1+15 |
| 8 |
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知全集U={x∈Z|1≤x≤5},A={1,2,3},∁UB={1,2},则A∩B( )
| A、{1,2} |
| B、{1,3} |
| C、{3} |
| D、{1,2,3} |