题目内容
5.设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列命题:①若m⊥α,n∥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,m∥β,则α∥β;
④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是( )
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
分析 根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定,不正确的只需取出反例即可.
解答 解:①若n∥α,经过n的平面与α交于a,根据线面平行的性质定理,可得n∥a,m⊥α,则m⊥a,∴m⊥n,正确;
②若α∥β,β∥γ,则α∥γ,由m⊥α,可得m⊥γ,正确;
③若m∥α,m∥β,则α∥β或α,β相交,故不正确;
④若α⊥γ,β⊥γ,则α∥β或α,β相交,故不正确;
故选:A.
点评 本题主要考查了空间中直线与直线之间的位置关系,以及直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关题目
10.
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,吴老师采用A,B两种不同的数学方式对甲、乙两个班进行教学实验,为了解教学效果,期末考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下:(记成绩不低于90分者为“成绩优秀”).
(1Ⅰ)在乙班样本的20个个体中,从不低于80分的成绩中不放回地抽取2次,每次抽取1个,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“成绩优秀”与数学方式有关?
独立性检验临界值表:
(1Ⅰ)在乙班样本的20个个体中,从不低于80分的成绩中不放回地抽取2次,每次抽取1个,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“成绩优秀”与数学方式有关?
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 01010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.027 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |