题目内容

一个口袋内有5个大小相同的球,其中有3个红球和2个白球.
(1)若有放回的从口袋中连续的取3次球(每次只取一个球),求在3次摸球中恰好取到两次红球的概率;
(2)若不放回地从口袋中随机取出3个球,求取到白球的个数ξ的分布列和数学期望E(ξ).
考点:离散型随机变量的期望与方差,列举法计算基本事件数及事件发生的概率,离散型随机变量及其分布列
专题:概率与统计
分析:(1)利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出在3次有放回的摸球中恰好取到两次红球的概率.
(2)白球的个数ξ可取0,1,2,分别求出相应的概率,由此能求出取到白球的个数ξ的分布列和数学期望E(ξ).
解答: 解:(1)设在3次有放回的摸球中恰好取到两次红球的概率为P,
由题设知,P=
C
2
3
(
3
5
)2(1-
3
5
)1=
54
125

(2)白球的个数ξ可取0,1,2,P(ξ=0)=
C
3
3
C
3
5
=
1
10
,  P(ξ=1)=
C
2
3
C
1
2
C
3
5
=
3
5
,  P(ξ=2)=
C
1
3
C
2
2
C
3
5
=
3
10

所以ξ的分布列如下表:
ξ012
P
1
10
3
5
3
10
E(ξ)=
1
10
×0+
3
5
×1+
3
10
×2=
6
5
点评:本题考查相互独立事件、互斥事件、随机变量的分布列、数学期望等概念及相关计算,考查运用概率知识与方法解决实际问题的能力.求离散随机变量的分布列一般先确定随机变量的所有取值,再计算各个取值的概率,最后得分布列并计算期望.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网