题目内容

2.已知点P(3,1)在矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ 变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵A-1

分析 由$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ $[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{3a+2}\\{2b-1}\end{array}]$=$[\begin{array}{l}{5}\\{-1}\end{array}]$,列方程求得a和b的值,求得矩阵A,丨A丨及A*,由A-1=$\frac{1}{丨A丨}$•A*,即可求得A-1

解答 解:依题意得$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ $[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{3a+2}\\{2b-1}\end{array}]$=$[\begin{array}{l}{5}\\{-1}\end{array}]$,
所以$\left\{\begin{array}{l}3a+2=5\\ 3b-1=-1\end{array}$,解得:$\left\{\begin{array}{l}a=1\\ b=0\end{array}$,
A=$[\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}]$,
丨A丨=$|\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}|$=1×(-1)-0×2=-1,
A*=$[\begin{array}{l}{-1}&{-2}\\{0}&{1}\end{array}]$,
∴A-1=$\frac{1}{丨A丨}$•A*=$[\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}]$,
∴A-1=$[\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}]$.

点评 本题考查矩阵的变换,逆矩阵的求法,考查计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网