题目内容
6.| A. | $\frac{{4+\sqrt{3}}}{6}$ | B. | $\frac{5}{6}$ | C. | $\frac{{9+\sqrt{3}}}{2}$ | D. | 5 |
分析 根据三视图判断几何体是正方体削去一个三棱锥,截面三角形为等边三角形,根据正方体的边长计算截面三角形的边长,求出截面的面积,再求几何体的其他各面的面积,然后相加
解答
解:由三视图知几何体是边长为2的正方体削去一个三棱锥,其直观图如图:
截面三角形为等边三角形,边长为$\sqrt{2}$,
∴截面的面积为$\frac{\sqrt{3}}{4}×2=\frac{\sqrt{3}}{2}$,
∴几何体的表面积S=3×1×1+$\frac{\sqrt{3}}{2}$
+$\frac{3}{2}$=$\frac{9+\sqrt{3}}{2}$.
故选:C.
点评 本题考查了由三视图求几何体的表面积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量
练习册系列答案
相关题目
17.
某几何体的三视图如图所示,则该几何体体积是( )
| A. | $\frac{{(8+π)\sqrt{3}}}{3}$ | B. | $\frac{{(8+2π)\sqrt{3}}}{6}$ | C. | $\frac{{(8+π)\sqrt{3}}}{6}$ | D. | $\frac{{(4+π)\sqrt{3}}}{3}$ |
11.[选做二]曲线y=x2的参数方程是( )
| A. | $\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$(t为参数) | B. | $\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$(t为参数) | ||
| C. | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数) | D. | $\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$(t为参数) |
18.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=$\frac{1}{2}•(弦×矢+矢×矢)$,弧田是由圆弧(简称为弧田弧)和以圆弧的两端为顶点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧
田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为$\frac{7}{2}$平方米,则cos∠AOB=( )
田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为$\frac{7}{2}$平方米,则cos∠AOB=( )
| A. | $\frac{7}{25}$ | B. | $\frac{3}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{2}{25}$ |
15.将函数y=cos2x的图象向左平移$\frac{π}{6}$个单位,所得的函数为( )
| A. | y=cos(2x+$\frac{π}{3}$) | B. | y=cos(2x+$\frac{π}{6}$) | C. | y=cos(2x-$\frac{π}{3}$) | D. | y=cos(2x-$\frac{π}{6}$) |