题目内容

5.一动圆圆心在抛物线x2=4y上.该圆过点(0,1).且与定直线l相切,则直线l的方程为y=-1.

分析 根据抛物线方程可求得其焦点坐标,要使圆过点(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,根据抛物线的定义可知,定直线正是抛物线的准线,进而根据抛物线方程求得准线方程即可.

解答 解:根据抛物线方程可知抛物线焦点为(0,1),
∴定点为抛物线的焦点,
要使圆过点(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,
根据抛物线的定义可知,定直线正是抛物线的准线,
其方程为y=-1.
故答案为y=-1.

点评 本题主要考查了抛物线的定义.对涉及过抛物线焦点的直线的问题时常借助抛物线的定义来解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网