题目内容
15.| A. | 函数f(x)有极大值f(-2),无极小值 | B. | 函数f(x)有极大值f(1),无极小值 | ||
| C. | 函数f(x)有极大值f(-2)和极小值f(1) | D. | 函数f(x)有极大值f(1)和极小值f(-2). |
分析 函数y=(1-x)f′(x)的图象如图所示,可得x>1时,f′(x)<0;-2<x<1时,f′(x)>0;x<-2时,f′(x)>0.即可判断出结论.
解答 解:函数y=(1-x)f′(x)的图象如图所示,
∴x>1时,f′(x)<0;-2<x<1时,f′(x)>0;x<-2时,f′(x)>0.
∴函数f(x)有极大值f(1),无极小值.
故选:B.
点评 本题考查了利用导数研究函数的极值、数形结合思想方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.
参考临界值表
(1)根据以上数据建立一个2×2的列联表;
| 看电视 | 运动 | 合计 | |
| 男性 | 21 | ||
| 女性 | 43 | 70 | |
| 合计 | 124 |
参考临界值表
| P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
3.已知函数f(x)=$\frac{1}{3}{x^3}$+ax2+(a+2)x-3有两个极值点,则实数a的取值范围是( )
| A. | (-1,2) | B. | (-∞,-1)∪(2,+∞) | C. | [-1,2] | D. | (-∞,-1]∪[2,+∞) |
20.若直线x+y-1=0与抛物线y=2x2交于A,B两点,则点M(1,0)到A,B两点的距离之积为( )
| A. | $4\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 4 | D. | 2 |
4.如图是函数y=f(x)图象的一部分,则函数y=f(x)的解析式可能为( )

| A. | y=sin(x+$\frac{π}{6}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=cos(4x-$\frac{π}{3}$) | D. | y=cos(2x-$\frac{π}{6}$) |