题目内容

用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )
A、(k+3)3
B、(k+2)3
C、(k+1)3
D、(k+1)3+(k+2)3
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:本题考查的数学归纳法的步骤,根据归纳假设,只需展开 (k+3)3
解答: 解:n=k+1时,证明“(k+1)3+(k+2)3+(k+3)3能被9整除”,根据归纳假设,n=k时,证明“k3+(k+1)3+(k+2)3能被9整除”,
所以只需展开 (k+3)3
故选:A.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网