题目内容

20.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线之间的距离的取值范围是[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$].

分析 由题意和韦达定理可得a+b=-1,ab=c,可得两平行线间的距离d满足d2=$\frac{(a-b)^{2}}{2}$=$\frac{(a+b)^{2}-4ab}{2}$=$\frac{1-4c}{2}$,由0≤c≤$\frac{1}{8}$和不等式的性质可得.

解答 解:∵a,b是方程x2+x+c=0的两个实根,
∴由韦达定理可得a+b=-1,ab=c,
∴两平行线间的距离d=$\frac{|a-b|}{\sqrt{{1}^{2}+{1}^{2}}}$,
故d2=$\frac{(a-b)^{2}}{2}$=$\frac{(a+b)^{2}-4ab}{2}$=$\frac{1-4c}{2}$,
∵0≤c≤$\frac{1}{8}$,∴0≤4c≤$\frac{1}{2}$,∴-$\frac{1}{2}$≤-4c≤0,
∴$\frac{1}{2}$≤1-4c≤1,∴$\frac{1}{4}$≤$\frac{1-4c}{2}$≤$\frac{1}{2}$,
∴$\frac{1}{4}$≤d2≤$\frac{1}{2}$,∴$\frac{1}{2}$≤d≤$\frac{\sqrt{2}}{2}$
故答案为:[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$]

点评 本题考查两平行线间的距离公式,涉及韦达定理和不等式的性质,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网