题目内容

15.已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π),在$x=\frac{π}{12}$时取得最大值4.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若$f({\frac{2}{3}α+\frac{π}{12}})=\frac{12}{5}$,求sinα.

分析 (Ⅰ)根据正弦函数的图象与性质,求出A、φ的值即可;
(Ⅱ)利用利用f(x)的解析式,结合二倍角公式求出sinα的值即可.

解答 解:(Ⅰ)∵函数f(x)=Asin(3x+φ)(A>0,x∈R,0<φ<π)在x=$\frac{π}{12}$时取得最大值4,
∴A=4,且3×$\frac{π}{12}$+φ=$\frac{π}{2}$,
即φ=$\frac{π}{2}$-$\frac{π}{4}$=$\frac{π}{4}$,
∴f(x)=4sin(3x+$\frac{π}{4}$);
(Ⅱ)∵f(x)=4sin(3x+$\frac{π}{4}$),
且f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$,
∴4sin(2α+$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{12}{5}$,
即sin(2α+$\frac{π}{2}$)=cos2α=$\frac{3}{5}$,
∴cos2α=1-2sin2α=$\frac{3}{5}$,
即sin2α=$\frac{1}{5}$,
解得sinα=±$\frac{\sqrt{5}}{5}$.

点评 本题主要考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网