题目内容
定义在R上的奇函数f(x)满足:当x>0时,f(x)=2017x+log2017x,则在R上f(x)零点的个数为 .
考点:函数零点的判定定理
专题:函数的性质及应用
分析:x>0时,求f′(x),并容易判断出f′(x)>0,所以f(x)在(0,+∞)上是单调函数.然后判断有没有x1,x2使得f(x1)f(x2)<0:分别取x=2017-2017,1,便可判断f(2017-2017)<0,f(1)>0,从而得到f(x)在(0,+∞)上有一个零点,根据奇函数的对称性便得到f(x)在(-∞,0)上有一个零点,而因为f(x)是奇函数,所以f(0)=0,这样便得到在R上f(x)零点个数为3.
解答:
解:x>0时,f′(x)=2017xln2017+
>0;
∴f(x)在(0,+∞)上单调递增;
取x=2017-2017,则f(2017-2017)=2017
-2017;
<1,∴2017
<2017;
∴f(2017-2017)<0,又f(1)=2017>0;
∴f(x)在(0,+∞)上有一个零点,根据奇函数关于原点对称,f(x)在(-∞,0)也有一个零点;
又f(0)=0;
∴函数f(x)在R上有3个零点.
故答案为:3.
| 1 |
| xln2017 |
∴f(x)在(0,+∞)上单调递增;
取x=2017-2017,则f(2017-2017)=2017
| 1 |
| 2017 |
| 1 |
| 2017 |
| 1 |
| 2017 |
∴f(2017-2017)<0,又f(1)=2017>0;
∴f(x)在(0,+∞)上有一个零点,根据奇函数关于原点对称,f(x)在(-∞,0)也有一个零点;
又f(0)=0;
∴函数f(x)在R上有3个零点.
故答案为:3.
点评:考查奇函数的概念,函数导数符号和函数单调性的关系,函数零点的概念,以及判断函数在一区间上有没有零点,以及有几个零点的方法,奇函数图象关于原点的对称性.
练习册系列答案
相关题目
已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为( )
| A、{0,2,4} |
| B、{2,3,4} |
| C、{1,2,4} |
| D、{0,2,3,4} |
已知F1,F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥F2,e1和e2分别是上述椭圆和双曲线的离心力,则有( )
A、
| ||||
B、
| ||||
| C、e12+e22=4 | ||||
| D、e12+e22=2 |
若a,b是异面直线,过b且与a平行的平面( )
| A、不存在 |
| B、存在但只有一个 |
| C、存在无数个 |
| D、只存在两个 |
函数y=2tan(3x-
)的一个对称中心是( )
| π |
| 6 |
A、(-
| ||
B、(-
| ||
C、(
| ||
D、(
|