题目内容

18.已知A,B,C三点不共线,O为平面ABC外一点,若由向量$\overrightarrow{OP}$=$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$+$λ\overrightarrow{OC}$确定的点P与A,B,C共面,那么λ=$\frac{1}{12}$.

分析 利用向量共面定理即可得出.

解答 解:因为A,B,C三点不共线,O为平面ABC外一点,若由向量$\overrightarrow{OP}$=$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$+$λ\overrightarrow{OC}$确定的点P与A,B,C,共面,
所以$\frac{1}{4}+\frac{2}{3}+λ$=1,解得λ=$\frac{1}{12}$;
故答案为:$\frac{1}{12}$.

点评 本题考查了向量共面定理,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网