题目内容
7.已知$\sqrt{2+\frac{2}{3}}$=$2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$…,类比推理得$\sqrt{m+\frac{n}{t}}$=m$\sqrt{\frac{n}{t}}$(m>0,n>0,t>0),则t+$\frac{16}{n}$+2005的最小值等于2016.分析 根据以上分析t=n2-1,可得t+$\frac{16}{n}$+2005=n2+$\frac{16}{n}$+2004=n2+$\frac{8}{n}$+$\frac{8}{n}$+2004,即可得出结论.
解答 解:根据以上分析可知$\sqrt{n+\frac{n}{{n}^{2}-1}}$=n$\sqrt{\frac{n}{{n}^{2}-1}}$,
∴t=n2-1,
∴t+$\frac{16}{n}$+2005=n2+$\frac{16}{n}$+2004=n2+$\frac{8}{n}$+$\frac{8}{n}$+2004≥$3\root{3}{64}$+2004=2016.
故答案为:2016.
点评 本题考查归纳推理,考出基本不等式的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
17.某制药厂对A、B两种型号的产品进行质量检测,从检测的数据中随机抽取10 次,记录如表( 数值越大表示产品质量越好):
(Ⅰ)画出A、B两种产品数据的茎叶图;若要从A、B中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品合适?简单说明理由;
(Ⅱ)若将频率视为概率,对产品A今后的三次检测数据进行预测,记这三次数据中不低于8.5 的次数为ξ,求ξ的分布列及期望Eξ.
| A | 7.9 | 9.0 | 8.3 | 7.8 | 8.4 | 8.9 | 9.4 | 8.3 | 8.5 | 8.5 |
| B | 8.2 | 9.5 | 8.1 | 7.5 | 9.2 | 8.5 | 9.0 | 8.5 | 8.0 | 8.5 |
(Ⅱ)若将频率视为概率,对产品A今后的三次检测数据进行预测,记这三次数据中不低于8.5 的次数为ξ,求ξ的分布列及期望Eξ.
15.直线l:x-ty-1=0将圆(x-3)2+(y-3)2=4的弧长恰好分成1:2两部分,则此时的弦长为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 4 |