题目内容

当0≤x≤2时,函数y=4x-
1
2
-a•2x+
a2
2
+1
的最大值为3,则实数a=
 
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:本题中的函数是一个复合函数,求解此类函数在区间上的最值,一般用换元法,把复合函数的最值问题变为两个函数的最值问题,以达到简化解题的目的.
解答: 解:设2x=t,∵0≤x≤2,∴1≤t≤4
原式化为:y=
1
2
(t-a)2+1,1≤t≤4
当a≤
5
2
时,y=
1
2
(t-a)2+1[1,a]是减函数,在[a,4]上是增函数,
故ymin=1,ymax=
a2
2
-4a+9=3,∴a=2或6,2符合;
当a<
5
2
时,ymax=
a2
2
-a+
3
2
=3,∴a=-1或3,3符合.
故答案为:2或3.
点评:本题考点是指数函数单调性的应用,考查指数复合型函数最值的求法,做此题时,采取了换元法求最值,其具体操作过程是先求内层函数的值域,再求外层函数在内层函数值域上的最值,此解法大大降低了判断复合函数单调性的难度,使得复合函数最值的求解变得容易,求解复合函数的最值时注意灵活使用这一技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网