ÌâÄ¿ÄÚÈÝ
£¨1£©ÊԱȽϼס¢ÒÒÁ½³§Éú²úµÄ²úÆ·ÖиÃÖÖÔªËØº¬Á¿µÄƽ¾ùÖµµÄ´óС£»
£¨2£©ÏÖ´ÓÒÒ³§³é³öµÄ·ÇÓÅµÈÆ·ÖÐËæ»ú³éÈ¡Á½¼þ£¬ÇóÖÁÉٳ鵽һ¼þ¸ÃÔªËØº¬Á¿Îª10ºÁ¿Ë»ò13ºÁ¿ËµÄ²úÆ·µÄ¸ÅÂÊ£®
¿¼µã£ºÁоٷ¨¼ÆËã»ù±¾Ê¼þÊý¼°Ê¼þ·¢ÉúµÄ¸ÅÂÊ,¾¥Ò¶Í¼
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©¸ù¾Ý¾¥Ò¶Í¼µÄ֪ʶ£¬ºÍƽ¾ùÊýµÄ¶¨Ò壬Çó³öƽ¾ùÊý±È½Ï¼´¿É£»
£¨2£©¼Çº¬Á¿Îª10ºÍ13ºÁ¿ËµÄÁ½¼þΪA£¬B£¬ÆäËû·ÇÓÅÖÊÆ··Ö±ðΪC£¬D£¬E£¬FÔò¡°´ÓÁù¼þ·ÇÓÅÖÊÆ·ÖÐËæ»ú³éÈ¡Á½¼þ¡±£¬¹²15¸ö£¬ÆäÖС°ÖÁÉٳ鵽һ¼þº¬Á¿Îª10ºÁ¿Ë»ò13ºÁ¿ËµÄ²úÆ·¡±Ëù×é³ÉµÄ»ù±¾Ê¼þÓÐ9¸ö£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É
£¨2£©¼Çº¬Á¿Îª10ºÍ13ºÁ¿ËµÄÁ½¼þΪA£¬B£¬ÆäËû·ÇÓÅÖÊÆ··Ö±ðΪC£¬D£¬E£¬FÔò¡°´ÓÁù¼þ·ÇÓÅÖÊÆ·ÖÐËæ»ú³éÈ¡Á½¼þ¡±£¬¹²15¸ö£¬ÆäÖС°ÖÁÉٳ鵽һ¼þº¬Á¿Îª10ºÁ¿Ë»ò13ºÁ¿ËµÄ²úÆ·¡±Ëù×é³ÉµÄ»ù±¾Ê¼þÓÐ9¸ö£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É
½â´ð£º
½â£º£¨1£©¼×³§Æ½¾ùֵΪ
£¨9+18+15+16+19+13+23+20+25+21£©=17.9£¬
ÒÒ³§Æ½¾ùֵΪ
£¨18+14+15+16+19+10+13+21+20+23£©=16.9£¬
ËùÒԼ׳§Æ½¾ùÖµ´óÓÚÒÒ³§Æ½¾ùÖµ
£¨2£©¼Çº¬Á¿Îª10ºÍ13ºÁ¿ËµÄÁ½¼þΪA£¬B£¬ÆäËû·ÇÓÅÖÊÆ··Ö±ðΪC£¬D£¬E£¬FÔò¡°´ÓÁù¼þ·ÇÓÅÖÊÆ·ÖÐËæ»ú³éÈ¡Á½¼þ¡±£¬»ù±¾Ê¼þÓУºAB£¬AC£¬AD£¬AE£¬AF£¬BC£¬BD£¬BE£¬BF£¬CD£¬CE£¬CF£¬DE£¬DF£¬EF£¬¹²15¸ö£®
¡°ÖÁÉٳ鵽һ¼þº¬Á¿Îª10ºÁ¿Ë»ò13ºÁ¿ËµÄ²úÆ·¡±Ëù×é³ÉµÄ»ù±¾Ê¼þÓУºAB£¬AC£¬AD£¬AE£¬AF£¬BC£¬BD£¬BE£¬BF£¬¹²9¸ö£¬
¹ÊËùÇó¸ÅÂÊP=
=
| 1 |
| 10 |
ÒÒ³§Æ½¾ùֵΪ
| 1 |
| 10 |
ËùÒԼ׳§Æ½¾ùÖµ´óÓÚÒÒ³§Æ½¾ùÖµ
£¨2£©¼Çº¬Á¿Îª10ºÍ13ºÁ¿ËµÄÁ½¼þΪA£¬B£¬ÆäËû·ÇÓÅÖÊÆ··Ö±ðΪC£¬D£¬E£¬FÔò¡°´ÓÁù¼þ·ÇÓÅÖÊÆ·ÖÐËæ»ú³éÈ¡Á½¼þ¡±£¬»ù±¾Ê¼þÓУºAB£¬AC£¬AD£¬AE£¬AF£¬BC£¬BD£¬BE£¬BF£¬CD£¬CE£¬CF£¬DE£¬DF£¬EF£¬¹²15¸ö£®
¡°ÖÁÉٳ鵽һ¼þº¬Á¿Îª10ºÁ¿Ë»ò13ºÁ¿ËµÄ²úÆ·¡±Ëù×é³ÉµÄ»ù±¾Ê¼þÓУºAB£¬AC£¬AD£¬AE£¬AF£¬BC£¬BD£¬BE£¬BF£¬¹²9¸ö£¬
¹ÊËùÇó¸ÅÂÊP=
| 9 |
| 15 |
| 3 |
| 5 |
µãÆÀ£º±¾Ì⿼²éÁ˾¥Ò¶Í¼µÄ֪ʶÒÔ¼°µÈ¿ÉÄÜʼþµÄ¸ÅÂÊ£¬¹Ø¼üÊÇÒ»Ò»ÁоٳöËùÓеĻù±¾Ê¼þ£¬ÊôÓÚ»ù´¡Ìâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼¯ºÏP={x|£¨x-3£©£¨x-6£©¡Ü0£¬x¡ÊZ}£¬Q={5£¬7}£¬ÏÂÁнáÂÛ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A¡¢Q⊆P |
| B¡¢P¡ÈQ=P |
| C¡¢P¡ÉQ=Q |
| D¡¢P¡ÉQ={5} |
Ô²x2+y2-2y-1=0¹ØÓÚÖ±Ïßx-2y-3=0¶Ô³ÆµÄÔ²·½³ÌÊÇ£¨¡¡¡¡£©
A¡¢£¨x-2£©2+£¨y+3£©2=
| ||
| B¡¢£¨x-2£©2+£¨y+3£©2=2 | ||
C¡¢£¨x+2£©2+£¨y-3£©2=
| ||
| D¡¢£¨x+2£©2+£¨y-3£©2=2 |
ÃüÌâ¡°Èôx£¾a2+b2£¬Ôòx£¾2ab¡±µÄÄæÃüÌâÊÇ£¨¡¡¡¡£©
| A¡¢¡°Èôx£¼a2+b2£¬Ôòx£¼2ab¡± |
| B¡¢¡°Èôx£¾a2+b2£¬Ôòx¡Ý2ab¡± |
| C¡¢¡°Èôx£¾2ab£¬Ôòx£¾a2+b2¡± |
| D¡¢¡°Èôx¡Ýa2+b2£¬Ôòx£¼2ab¡± |