题目内容
13.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则$\frac{2}{e_1}+\frac{e_2}{2}$的最小值为( )| A. | $\sqrt{6}$ | B. | 3 | C. | 6 | D. | $\sqrt{3}$ |
分析 通过图象可知F1F2=F2P=2c,利用椭圆、双曲线的定义及离心率公式可得$\frac{2}{e_1}+\frac{e_2}{2}$的表达式,通过基本不等式即得结论.
解答
解:由题意可知:F1F2=F2P=2c,
又∵F1P+F2P=2a1,F1P-F2P=2a2,
∴F1P+2c=2a1,F1P-2c=2a2,
两式相减,可得:a1-a2=2c,
∵$\frac{2}{e_1}+\frac{e_2}{2}$=$\frac{2{a}_{1}}{c}$$+\frac{c}{2{a}_{2}}$=$\frac{4{a}_{1}{a}_{2}+{c}^{2}}{2c{a}_{2}}$,
∴$\frac{2}{e_1}+\frac{e_2}{2}$=$\frac{4(2c+{a}_{2}){a}_{2}+{c}^{2}}{2c{a}_{2}}$=$\frac{8c{a}_{2}+4{{a}_{2}}^{2}+{c}^{2}}{2c{a}_{2}}$=4+2$\frac{{a}_{2}}{c}$+$\frac{c}{2{a}_{2}}$,
∵2$\frac{{a}_{2}}{c}$+$\frac{c}{2{a}_{2}}$≥2$\sqrt{\frac{2{a}_{2}}{c}•\frac{c}{2{a}_{2}}}$=2,当且仅当$\frac{2{a}_{2}}{c}=\frac{c}{2{a}_{2}}$时等号成立,
∴$\frac{2}{e_1}+\frac{e_2}{2}$的最小值为6,
故选:C.
点评 本题考查椭圆的简单性质,考查运算求解能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
1.已知$λ=3\int_0^1{{x^2}dx}$,在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得$\overrightarrow{AP}•\overrightarrow{AC}≥λ$的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
8.在复平面内,复数$z=\frac{-1+i}{2-i}$(i为虚数单位)的共轭复数对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
5.已知函数f ( x)=2ax-a+3,若?x0∈(-1,1),f ( x0 )=0,则实数 a 的取值范围是( )
| A. | (-∞,-3)∪(1,+∞) | B. | (-∞,-3) | C. | (-3,1) | D. | (1,+∞) |
2.已知α为第四象限角,$sinα+cosα=\frac{1}{5}$,则$tan\frac{α}{2}$的值为( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |