题目内容
3.圆x2+y2=2的圆心到直线$y=x+\sqrt{2}$的距离为1.分析 利用点到直线的距离公式即可得出.
解答 解:圆x2+y2=2的圆心(0,0)到直线$y=x+\sqrt{2}$的距离d=$\frac{\sqrt{2}}{\sqrt{2}}$=1.
故答案为:1.
点评 本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
13.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则$\frac{2}{e_1}+\frac{e_2}{2}$的最小值为( )
| A. | $\sqrt{6}$ | B. | 3 | C. | 6 | D. | $\sqrt{3}$ |
14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,则z=x-2y的最大值为( )
| A. | -12 | B. | -1 | C. | 0 | D. | $\frac{3}{2}$ |
11.已知当x<1时,f(x)=(2-a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,则a的取值范围是( )
| A. | (1,2) | B. | $(1,\frac{3}{2}]$ | C. | $[\frac{3}{2},2)$ | D. | (0,1)∪(2,+∞) |
8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,则A∩(∁UB)=( )
| A. | (-1,+∞) | B. | [3,+∞) | C. | (-1,0)∪(3,+∞) | D. | (-1,0]∪[3,+∞) |
15.下列命题中真命题是( )
| A. | $?x∈({-∞,\frac{π}{4}}),tanx≤1$ | |
| B. | 设l,m表示不同的直线,α表示平面,若m∥l且m⊥α,则l∥α | |
| C. | 利用计算机产生0和l之间的均匀随机数m,则事件“3m-1≥0”发生的概率为$\frac{1}{3}$ | |
| D. | “a>0,b>0”是“$\frac{b}{a}+\frac{a}{b}$≥2”的充分不必要条件 |