题目内容

如图1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB上异于A,B的点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF⊥平面AEFD,如图2.
(Ⅰ)求证:AB∥平面DFC;
(Ⅱ)当三棱锥F-ABE体积最大时,求平面ABC与平面AEFD所成锐二面角的余弦值.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)证明BE∥平面DFC、AE∥平面DFC,可得平面ABE∥平面DFC,即可证明AB∥平面DFC;
(Ⅱ)建立坐标系,利用三棱锥F-ABE体积最大时,确定点的坐标,可得向量的坐标,求出平面CBA的法向量,利用向量的夹角公式,即可求平面ABC与平面AEFD所成锐二面角的余弦值.
解答: (Ⅰ)证明:∵BE∥CF,BE?平面DFC,CF?平面DFC,
∴BE∥平面DFC,
同理AE∥平面DFC,
∵BE∩AE=E,
∴平面ABE∥平面DFC,
∵AB?平面ABE,
∴AB∥平面DFC;
(Ⅱ)解:∵平面EBCF⊥平面AEFD,CF⊥EF,平面EBCF∩平面AEFD=EF,
∴CF⊥平面AEFD,
建立如图所示的坐标系,设AE=x,则EB=2-x,
∴VF-ABE=
1
3
1
2
x(2-x)•2=-
1
3
(x-1)2+
1
3

∴x=1时,三棱锥F-ABE体积最大,
∴A(2,1,0),B(2,0,1),C(0,0,3),
CB
=(2,0,-2),
CA
=(2,1,-3),
设平面CBA的法向量为
m
=(x,y,z),则
x-z=0
2x+y-3z=0

m
=(1,1,1),
∵平面AEFDA的一个法向量为
FC
=(0,0,2),
∴cos<
m
FE
>=
2
3
×2
=
3
3

∴平面ABC与平面AEFD所成锐二面角的余弦值是
3
3
点评:本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网