ÌâÄ¿ÄÚÈÝ
18£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÖ±Ïß1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{6cos¦È}{1-cos2¦È}$£¬ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®·ÖÎö Ö±Ïß1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îª±ê×¼²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}m}\\{y=\frac{3\sqrt{3}}{4}+\frac{1}{2}m}\end{array}\right.$£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{6cos¦È}{1-cos2¦È}$£¬»¯Îª2¦Ñ2sin2¦È=6¦Ñcos¦È£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®°ÑÖ±ÏߵIJÎÊý·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÀûÓÃÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤=|m1-m2|=$\sqrt{£¨{m}_{1}+{m}_{2}£©^{2}-4{m}_{1}{m}_{2}}$£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÖ±Ïß1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îª±ê×¼²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}m}\\{y=\frac{3\sqrt{3}}{4}+\frac{1}{2}m}\end{array}\right.$£¬
ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{6cos¦È}{1-cos2¦È}$£¬»¯Îª2¦Ñ2sin2¦È=6¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºy2=3x£®
°ÑÖ±ÏߵIJÎÊý·½³Ì´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£º$£¨\frac{3\sqrt{3}}{4}+\frac{1}{2}m£©^{2}$=3$£¨3+\frac{\sqrt{3}}{2}m£©$£¬
¿ÉµÃ£º4m2-12$\sqrt{3}$m-117=0£¬
¡àm1+m2=3$\sqrt{3}$£¬m1m2=-$\frac{117}{4}$£®
¡àÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤=|m1-m2|=$\sqrt{£¨{m}_{1}+{m}_{2}£©^{2}-4{m}_{1}{m}_{2}}$=$\sqrt{£¨3\sqrt{3}£©^{2}-4¡Á£¨-\frac{117}{4}£©}$=12£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê¡¢ÏÒ³¤¹«Ê½¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $£¨-¡Þ£¬\frac{3}{2}]$ | B£® | $£¨1£¬\frac{3}{2}£©$ | C£® | $£¨1£¬\frac{3}{2}]$ | D£® | $[\frac{3}{2}£¬+¡Þ£©$ |
| A£® | $\frac{1}{2}$ | B£® | -$\frac{1}{3}$ | C£® | -3 | D£® | -2 |
| A£® | {-1£¬1} | B£® | {-1£¬3} | C£® | {3£¬1£¬-1} | D£® | {1£¬3} |