题目内容
17.在极坐标系中,极点到直线ρcosθ=1的距离为1.分析 先求出直线的直角坐标方程,求出极点的直角坐标,即可求得极点到直线ρcosθ=1的距离.
解答 解:直线ρcosθ=1,即x=1,极点的直角坐标为(0,0),故极点到直线ρcosθ=1的距离为1,
故答案为1.
点评 本题主要考查把点的极坐标化为直角坐标,点到直线的距离的定义,属于基础题.
练习册系列答案
相关题目
7.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:2,则△OFN的面积为( )
| A. | $8\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{8\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
2.下列函数中,既是偶函数又是(0,+∞)上的增函数的是( )
| A. | y=-x3 | B. | y=2|x| | C. | y=${x}^{\frac{1}{2}}$ | D. | y=log3(-x) |
6.在复平面内,复数z的对应点为(1,2),复数z的共轭复数为( )
| A. | 1+2i | B. | 1-2i | C. | -2+i | D. | -2-i |
7.已知复数z满足(3-i)z=2+i(i为虚数单位),则z的共轭复数是( )
| A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}i$ | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |