题目内容

9.设f(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$,若f(g(a))=0,则(  )
A.a为无理数B.a为有理数C.a=0D.a=1

分析 由f(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$可知g(a)=0,再由g(x)求得.

解答 解:∵f(g(a))=0,
∴g(a)=0,
∴a为无理数,
故选:A.

点评 本题考查了分段函数及复合函数的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网