题目内容

5.在△ABC中,A,B,C对应边分别为a,b,c,且a=1,b=$\sqrt{2},A={30°}$,则B=45°或135°.

分析 先判定三角形解得个数,再由正弦定理可得.

解答 解:∵在△ABC中a=1,b=$\sqrt{2}$,A=30°,
又∵bsinA=$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$<1<$\sqrt{2}$,
∴已知三角形有两解,
由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}}{2}$,
∴B=45°或B=135°.
故答案为:45°或135°.

点评 本题考查正余弦定理解三角形,涉及三角形解得个数的判定,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网