题目内容

17.三次函数$f(x)=a{x^3}-\frac{3}{2}{x^2}+2x+1$的图象在点(1,f(1))处的切线与x轴平行,则f(x)在区间(1,3)上的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{6}$C.$\frac{11}{3}$D.$\frac{5}{3}$

分析 求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a,再求f(x)在区间(1,3)上的最小值.

解答 解:f′(x)=3ax2-3x+2,
由图象在(1,f(1))处的切线平行于x轴,
可得f′(1)=3a-3+2=0,
解得a=$\frac{1}{3}$,
∴f′(x)=(x-1)(x-2),
函数在(1,2)上单调递减,(2,3)上单调递增,
∴x=2时,f(x)在区间(1,3)上的最小值是$\frac{5}{3}$.
故选D.

点评 本题考查导数的运用:求切线的斜率,函数的单调性与最值,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网