题目内容
15.设数列{an}的前n项和为Sn,已知a1=a(a≠-2),an+1=2Sn+2n,n∈N•.(Ⅰ)设bn=Sn+2n.求证:数列{bn}是等比数列;
(Ⅱ)若数列{an}是单调递增数列,求实数a的取值范围.
分析 (Ⅰ)通过Sn+1-Sn=an+1计算可知Sn+1=3Sn+2n,进而计算可知数列{bn}是以a+2为首项、3为公比的等比数列;
(Ⅱ)通过(I)可知Sn=(a+2)•3n-1-2n,并与Sn-1=(a+2)•3n-2-2n-1(n≥2)作差可知an=(a+2)•2•3n-2-2n-1(n≥2),利用数列{an}是单调递增数列化简、整理即得结论.
解答 (Ⅰ)证明:由题意可知Sn+1-Sn=an+1=2Sn+2n,
即Sn+1=3Sn+2n,
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{S}_{n+1}+{2}^{n+1}}{{S}_{n}+{2}^{n}}$=$\frac{3{S}_{n}+3•{2}^{n}}{{S}_{n}+{2}^{n}}$=3,
又∵a≠-2,即a+2≠0,
∴数列{bn}是以a+2为首项、3为公比的等比数列;
(Ⅱ)解:由(I)可知,Sn+2n=b1•3n-1=(a+2)•3n-1,
∴Sn=(a+2)•3n-1-2n,
Sn-1=(a+2)•3n-2-2n-1(n≥2),
两式相减得:an=(a+2)•2•3n-2-2n-1(n≥2),
又∵a1=a不满足上式,且数列{an}是单调递增数列,
∴a2-a1=a+2>0,即a>-2,
且an+1-an=(a+2)•2•3n-1-2n-(a+2)•2•3n-2+2n-1>0(n≥2),
即4(a+2)•3n-2>2n-1,化简得a+2>$\frac{9}{8}$•$(\frac{2}{3})^{n}$,即a>-$\frac{3}{2}$,
综上所述,实数a的取值范围是a>-$\frac{3}{2}$.
点评 本题考查数列的通项,涉及数列的单调性等基础知识,注意解题方法的积累,属于中档题.
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
| A. | ?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1 | B. | ?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1 | ||
| C. | ?x∈R,3x+$\frac{1}{{3}^{{x}$>1 | D. | ?x∈R,3x+$\frac{1}{{3}^{{x}$<1 |