题目内容

3.已知数列f(x)=x4+(2-a)x2+x2(lnx)2+1,x>0,若f(x)≥0恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,4]C.[2,+∞)D.[4,+∞)

分析 不等式整理得x2+$\frac{1}{{x}^{2}}$+(lnx)2≥a-2,只需求出左式的最小值即可.利用构造函数,显然可知函数的最小值为2.

解答 解:x4+(2-a)x2+x2(lnx)2+1≥0恒成立,
∴x2+$\frac{1}{{x}^{2}}$+(lnx)2≥a-2,
令g(x)=x2+$\frac{1}{{x}^{2}}$+(lnx)2
∴g(x)≥g(1)=2,
∴2≥a-2,
∴a≤4,
故选B.

点评 考查了恒成立问题的转换,利用适当变形,求出函数的最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网