题目内容

13.求证:2sin2α•sin2β+2cos2α•cos2β=1+cos2α•cos2β.

分析 由条件利用同角三角函数的基本关系、二倍角公式化简所给的式子,证明2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β=1即可.

解答 解:∵cos2αcos2β=(cos2α-sin2α)(cos2β-sin2β)
=cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β,
∴2sin2α•sin2β+2cos2α•cos2β-cos2α•cos2β
=2sin2α•sin2β+2cos2α•cos2β-(cos2αcos2β-cos2αsin2β-sin2αcos2β+sin2αsin2β)
=cos2α•cos2β+sin2α•sin2β+cos2αsin2β+sin2αcos2β
=(cos2α•cos2β+cos2αsin2β)+(sin2α•sin2β+sin2αcos2β)
=cos2α+sin2α=1,
故得证.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网