题目内容
12.经过点P(-2,1)且与抛物线y2=4x只有一个公共点的直线的条数为( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 设出直线方程代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)直线与抛物线只有一个公共点?(*)只有一个根.
解答 解:由题意可设直线方程为:y=k(x+2)+1,
代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)
直线与抛物线只有一个公共点等价于(*)只有一个根
①k=0时,y=1符合题意;
②k≠0时,△=(4k2+2k-4)2-4k2(4k2+4k+1)=0,整理,得2k2+k-1=0,
解得k=$\frac{1}{2}$或k=-1.
满足题意的直线有3条.
故选:C.
点评 本题主要考查了由直线与抛物线的位置关系的求解参数的取值范围,一般的思路是把位置关系转化为方程解的问题,体现了转化的思想.
练习册系列答案
相关题目
3.已知数列f(x)=x4+(2-a)x2+x2(lnx)2+1,x>0,若f(x)≥0恒成立,则实数a的取值范围是( )
| A. | (-∞,2] | B. | (-∞,4] | C. | [2,+∞) | D. | [4,+∞) |
4.已知函数f(x)若f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$,g(x)=f(x)-k有3个零点,则实数k的取值范围是( )
| A. | (1,+∞) | B. | (0,1)∪(1,+∞) | C. | (0,1) | D. | (0,1] |