题目内容

8.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{1}{sinC}$,且c=2.
(1)求ab的值;
(2)若△ABC的面积S=$\sqrt{3}$,求a2+b2的值.

分析 (1)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理可得:ab=c2,结合已知c=2,即可求值.
(2)由已知及三角形面积公式可解得:sinC=$\frac{\sqrt{3}}{2}$,结合C为锐角,可得cosC,利用余弦定理即可得解.

解答 解:(1)∵$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{1}{sinC}$,
∴$\frac{cosAsinB+cosBsinA}{sinAsinB}$=$\frac{sin(A+B)}{sinAsinB}$=$\frac{sinC}{sinAsinB}$=$\frac{1}{sinC}$,
∴整理可得:sinAsinB=sin2C,
∴由正弦定理可得:ab=c2
∵c=2.
∴ab=4.
(2)∵△ABC的面积S=$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×4×$sinC,解得:sinC=$\frac{\sqrt{3}}{2}$.
∴由C为锐角,可得cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{1}{2}$.
∴由余弦定理可得:4=a2+b2-2×ab×$\frac{1}{2}$,解得:a2+b2=8.

点评 本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网