题目内容
已知一个几何体的三视图如图所示,则该几何体的体积为( )

A、
| ||
| B、5 | ||
C、
| ||
| D、6 |
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图,画出几何体的直观图,并分析出几何体的形状,代入体积公式,可得答案.
解答:
解:由已知中的三视图可得:
该几何的直观图如下图所示:

它是由一个长方体截去两个三棱锥所得:
故体积V=1×2×3-2×
×(
×
×1)×3=5,
故选:B
该几何的直观图如下图所示:
它是由一个长方体截去两个三棱锥所得:
故体积V=1×2×3-2×
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 2 |
故选:B
点评:本题考查的知识点是由三视图求体积,其中根据已知中的三视图,分析出几何体的形状,是解答的关键.
练习册系列答案
相关题目
如图,在圆C中,C是圆心,点A,B在圆上,
•
的值( )

| AB |
| AC |
| A、只与圆C的半径有关 |
| B、只与弦AB的长度有关 |
| C、既与圆C的半径有关,又与弦AB的长度有关 |
| D、是与圆C的半径和弦AB的长度均无关的定值 |
下列说法错误的是( )
| A、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0” | ||
B、“sinθ=
| ||
| C、若命题p:?x∈R,x2-x+1=0,则¬p:?x∈R,x2-x+1≠0 | ||
| D、若命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题 |
函数f(x)是以4为周期的奇函数,且f(-1)=1,则sin[πf(5)+
]=( )
| π |
| 2 |
| A、-1 | B、0 | C、0.5 | D、1 |
已知定义在R上的函数f(x)、g(x)满足f(x)=axg(x),f′(x)g(x)<f(x)g′(x),其中g(x)≠0且
+
=
,在有穷数列{
}(n=1,2,3,…,10)中任取前k项相加,则前k项和大于
的概率是( )
| f(1) |
| g(1) |
| f(-1) |
| g(-1) |
| 5 |
| 2 |
| f(n) |
| g(n) |
| 63 |
| 64 |
A、
| ||
B、
| ||
C、
| ||
D、
|
乘积(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)展开后共有( )
| A、9项 | B、10项 |
| C、24项 | D、32项 |
在如图的程序框图中,已知f0(x)=x•ex,则输出的结果是( )

| A、(x+2012)ex |
| B、xex |
| C、(1+2012x)ex |
| D、2012(1+x)ex |
已知全集U=R,集合A={x|y=
},集合B={y|y=log3x,x∈A},则A∩(∁UB)=( )
| -x2+10x-9 |
| A、[1,2] |
| B、[1,3] |
| C、(2,9] |
| D、(3,9] |