题目内容

△ABC中,a,b,c分别是内角A,B,C对边,且a2=bc.
(1)当a=4,
b
c
=
cosB
cosC
,求△ABC的面积;
(2)求函数f(A)=sin(A+
π
3
)
的定义域和值域.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)已知等式利用正弦定理化简,整理得到B=C,利用等角对等边得到b=c,把a,b=c代入a2=bc,求出a=b=c=4,得到三角形为等边三角形,求出面积即可;
(2)利用余弦定理表示出cosA,把a2=bc代入利用基本不等式求出cosA的范围,确定出A的范围,进而确定出f(A)的定义域与值域即可.
解答: 解:(1)由正弦定理得:
b
c
=
sinB
sinC
=
cosB
cosC
,即sinBcosC=sinCcosB,
整理得:sinBcosC-cosBsinC=sin(B-C)=0,
∴B-C=0,即B=C,
∵a=4,a2=bc,
∴a=b=c=4,即△ABC为等边三角形,
则S△ABC=
3
4
×42=4
3

(2)∵a2=bc,
∴cosA=
b2+c2-a2
2bc
=
b2+c2-bc
2bc
2bc-bc
2bc
=
1
2

∴A∈(0,
π
3
],即A+
π
3
∈(
π
3
3
],
则f(A)=sin(A+
π
3
)∈[
3
2
,1].
点评:此题考查了正弦、余弦定理,基本不等式的运用,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网