题目内容

已知x>0,y>0,
1
x
+
2
y
+1=2,则2x+y的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵x>0,y>0,
1
x
+
2
y
+1=2,
∴2x+y=(2x+y)(
1
x
+
2
y
)
=4+
y
x
+
4x
y
≥4+2
y
x
4x
y
=8,当且仅当y=2x=4时取等号.
∴2x+y的最小值为8.
故答案为:8.
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网