题目内容
2.已知函数$f(x)=\frac{x}{1+x}$,则$f(1)+f(2)+f(3)+…+f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$=$\frac{4033}{2}$.分析 先求出f(x)+f($\frac{1}{x}$)=1,由此能求出$f(1)+f(2)+f(3)+…+f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$的值.
解答 解:∵函数$f(x)=\frac{x}{1+x}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{x}{1+x}+\frac{\frac{1}{x}}{1+\frac{1}{x}}$=$\frac{x}{1+x}+\frac{1}{x+1}$=1,
∴$f(1)+f(2)+f(3)+…+f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$
=f(1)+[f(2)+f($\frac{1}{2}$)]×2016
=$\frac{1}{2}+$2016=$\frac{4033}{2}$.
故答案为:$\frac{4033}{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
13.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )

| A. | 731 | B. | 809 | C. | 852 | D. | 891 |
7.
为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,并判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望.
下面公式及临界值表仅供参考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)完成下面2×2列联表,并判断是否有90%的把握认为“空间想象能力突出”与性别有关;
| 空间想象能力突出 | 空间想象能力正常 | 合计 | |
| 男生 | |||
| 女生 | |||
| 合计 |
下面公式及临界值表仅供参考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(X2≥k) | 0.100 | 0.050 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
2.若函数$f(x)=\frac{1}{2}{e^x}$与g(x)的图象关于直线y=x对称,P,Q分别是f(x),g(x)上的动点,则|PQ|的最小值为( )
| A. | 1-1n2 | B. | 1+1n2 | C. | $\sqrt{2}(1-1n2)$ | D. | $\sqrt{2}(1+1n2)$ |