题目内容
设复数z1=8+ai,z2=8+2i,若z1=
,则实数a等于( )
. |
| z2 |
| A、-2 | B、2 | C、2i | D、-2i |
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:由条件利用两个复数相等的充要条件,求出a的值.
解答:
解:由题意可得 8+ai=8-2i,∴a=-2,
故选:A.
故选:A.
点评:本题主要考查复数的基本概念,两个复数相等的充要条件,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
)|对x∈R恒成立,且f(
)>0,则f(x)的单调递减区间是( )
| π |
| 4 |
| π |
| 6 |
A、[kπ,kπ+
| ||||
B、[kπ-
| ||||
C、[kπ+
| ||||
D、[kπ-
|
下列函数中,既是奇函数又是在定义域上是减函数的为( )
| A、y=x+1 | ||
B、y=
| ||
| C、y=-x3 | ||
| D、y=lnx |
设函数f(x)=(
)x-log2x,且f(a)=0,若0<b<a,则( )
| 1 |
| 3 |
| A、f(b)>0 |
| B、f(b)=0 |
| C、f(b)<0 |
| D、f(b)≤0 |
在△ABC中,已知D是AB边上一点,若
=3
,
=λ
+μ
,则λ=( )
| AD |
| DB |
| CD |
| CA |
| CB |
A、
| ||
B、
| ||
C、
| ||
D、
|